

VARIABILIDADE ESPACIAL DOS ATRIBUTOS FÍSICOS E CARBONO ORGÂNICO EM UM GLEISSOLO MELÂNICO ALÍTICO TÍPICO SOB TRÊS SISTEMAS DE MANEJO

Spatial variability of the physical properties and organic carbon in a Epiaquic Melanic under three management systems

Variabilidad espacial de atributos físicos y carbono orgánico en un Gleissolo melónico alítico típico bajo tres sistemas de gestión

https://doi.org/10.35701/rcgs.v27.1080

Histórico do Artigo: Recebido em 19 de dezembro de 2024 Aceito em 26 de junho de 2025 Publicado em 15 de outubro de 2025 Marcelino Silva Farias Filho1

Milton César Costa Campos²

Vitória Gleyce Sousa Ferreira³

Lana Costa Ferreira4

RESUMO

O entendimento da distribuição espacial dos atributos do solo é de suma importância para definição do correto manejo deste recurso. Este trabalho objetivou avaliar a variabilidade dos atributos físicos e carbono orgânico em um Gleissolo Melânico Alítico típico, textura muito argilosa, A proeminente sob três sistemas de manejo no município de Arari, situado no noroeste do estado do Maranhão. Foram selecionadas três áreas de um hectare em formato regular de 100X100 m, com solo utilizado por arroz irrigado e pecuária (área A), pecuária extensiva em vegetação nativa (área B) e arroz irrigado (área C), onde foram coletadas amostras de solo deformadas na profundidade 0-0,20 m, com espaçamento regular de 10 x 10 m, perfazendo 121 amostras por área e um total de 363. As variáveis analisadas foram resistência à penetração, densidade global, porosidade (total, macro e microporosidade), areia,

https://orcid.org/0000-0003-1524-2080

¹ Professor Adjunto do Departamento de Geociências e do Programa de Pós-Graduação em Geografia da Universidade Federal do Maranhão (UFMA). Email: marcelino.farias@ufma.br

https://orcid.org/0000-0001-6153-5293

² Professor Associado IV do Centro de Ciências Agrárias e do Programa de Pós-Graduação em Ciência do Solo da Universidade Federal da Paraíba (UFPB). Email: mcesarsolos@gmail.com

https://orcid.org/0000-0002-8183-7069

³ Doutoranda em Geografia da Universidade Estadual Paulista de Júlio Mesquita Filho (UNESP). Email: vitoria.gleyce@unesp.br

https://orcid.org/0000-0001-5085-3843

⁴ Doutoranda em Geografia da Universidade Estadual do Centro-Oeste (UNICENTRO). Email: 21311254099@unicentro.br.

silte, argila e carbono orgânico. As análises dos dados foram feitas por estatística descritiva, teste de média e geoestatística. Os valores foram elevados para a variável resistência à penetração nas três áreas, sendo a área A aquela que teve o maior valor médio (5,73 MPa), indicando a influência da combinação lavoura-pecuária no incremento da compactação do solo. As variáveis apresentaram dependência espacial em todas as áreas, com exceção da areia e carbono orgânico na área A, cuja variabilidade pode ter sido alterada pelo manejo. A porosidade total teve maior dependência espacial e menor variabilidade, apresentando valores diferentes para as três áreas, apesar da semelhança textural, o que indica que houve alterações dos seus valores com o manejo.

Palavras-Chave: Compactação do solo. Atributos do solo. Geoestatística.

ABSTRACT

Understanding the spatial distribution of soil attributes is very important for setting the proper management of this resource. This study aimed to evaluate the variability of the physical properties and organic carbon in a Gleysoil Alitic Melanic typical clayey under three management systems in the municipality of Arari, located in the northwest of the state of Maranhão. Three areas of one hectare were selected in regular format of 100x100 m, with soil used for rice and livestock (area A), extensive cattle ranching on native vegetation (area B) and irrigated rice (area C), where soil samples were collected deformed in the 0-0.20 m depth, with a regular spacing of 10 x 10 m, totaling 121 samples per area and a total of 363. The variables analyzed were penetration resistance, bulk density, porosity (total, macro and microporosity), sand, silt, clay and organic carbon. Data analyzes were performed using descriptive statistics, average test and geostatistics. The values were higher for the variable resistance to penetration in the three areas, with an area A that had the highest average value (5.73 MPa), indicating the influence of crop-livestock combination in increased soil compaction. The variables exhibit spatial dependence in all areas, with the exception of sand and organic carbon in area A, whose variability may have been changed by management. Total porosity have greater spatial dependence and less variability, with different values for the three areas, despite the textural similarity, indicating that there were changes in their values with the management.

Palavras-Chave: Soil Compaction. Soil attributes. Geostatistics.

RESUMEN

La comprensión de la distribución espacial de los atributos del suelo es de suma importancia para definir el manejo correcto de este recurso. Este trabajo tuvo como objetivo evaluar la variabilidad de los atributos físicos y de carbono orgánico en un típico Melnic Gleissolo Alytic, de textura muy arcillosa, un destacado bajo tres sistemas de gestión en el municipio de Arari, ubicado en el noroeste del estado de Maranhão. Se seleccionaron tres áreas de una hectárea en formato regular de 100x100 m, con suelo utilizado por arroz de regadío y ganado (área A), ganadería extensiva en vegetación nativa (área B) y arroz de regadío (área C), donde se recolectaron muestras de suelo deformadas a una profundidad de 0-0.20 m, con un espaciamiento regular de 10 x 10 m, totalizando 121 muestras por área y un total de 363. Las variables analizadas fueron resistencia a la penetración, densidad global, porosidad (total, macro y microporosidad), arena, limo, arcilla y carbono orgánico. Los análisis de los datos se realizaron mediante estadística descriptiva, prueba de medias y geoestadística. Los valores fueron altos para la variable resistencia a la penetración en las tres áreas, y el área A fue la de mayor valor medio (5,73 MPa), indicando la influencia de la combinación cultivo-ganado en el aumento de la compactación del suelo. Las variables presentaron dependencia espacial en todas las áreas, excepto en la arena y el carbono orgánico en el área A, cuya variabilidad puede haber sido alterada por el manejo. La porosidad total tuvo mayor dependencia espacial y menor variabilidad, presentando valores diferentes para las tres áreas, a pesar de la similitud textural, lo que indica que hubo cambios en sus valores con el manejo.

Palabras clave: Compactación del suelo. Atributos del suelo. Geoestadística.

INTRODUÇÃO

Os solos de planícies inundáveis são responsáveis por cerca de 80% da produção de arroz (Oryza sativa L.) no Brasil (Marrenjo et al., 2016). Contudo, devido a perturbação sofrida nos atributos físicos e químicos dos solos pelas atividades agrícolas, os quais geram a degradação do solo. Sobretudo, provocando a redução dos espaços porosos do solo, sendo assim indicada como a uma das causas da degradação física dos solos pela compactação, pois altera a estrutura do solo, função da reorganização das partículas e de seus agregados, aumentando a densidade do solo e a resistência mecânica do solo à penetração (Silva, 2021; Yadav et al., 2021). A compactação pode ser mensurada indiretamente pela resistência que um solo oferece à penetração de raízes, sendo influenciada pelos conteúdos de água, textura e quantidade de espaços porosos presentes (Cortez et al., 2019; Silva, 2021).

A compactação é variável no espaço, dependendo da variabilidade natural dos atributos físicos dos solos e dos manejos adotados, dessa forma, o uso da terra desempenha um papel dinâmico na regulação dos padrões espaciais dos atributos dos solos, já que o referido uso pode mudar com mais frequência (Locatelli et al., 2022). Assim o uso de máquinas e implementos em solos com umidade próxima ao limite de liquidez provoca a deformação e compactação dos solos agrícolas, pois a água reduz a coesão e atua como lubrificante entre as partículas de solo, permitindo o deslizamento e empacotamento das partículas quando este é submetido a algum tipo de pressão (Yadav et al., 2021), aspecto relevante no manejo de solos hidromórficos, como os Gleissolos (Farias Filho, Bueno e Valladares, 2020).

Em áreas sob cultivo de arroz irrigado a compactação é um fenômeno muito frequente, pois os solos localizam-se em relevo plano a suave-ondulado, com feições abaciadas da paisagem, geralmente mal drenadas (várzeas), que em razão dessa configuração facilita o manejo da irrigação por inundação (Sousa et al., 2021). Por outro lado, esses solos normalmente dificultam o estabelecimento de sistemas alternativos que envolvam culturas de sequeiro (Marrenjo et al., 2016), especialmente quando compactados.

A pecuária também pode degradar fisicamente o solo seja pela compactação ou pela erosão, uma vez que forças mecânicas dos cascos desagregam o solo pela retirada da vegetação, reduzindo a sua porosidade (Oliveira et al., 2022; Locatelli et al., 2023). O pastoreio também pode heterogeneizar o padrão espacial dos atributos do solo por meio de processos biológicos mediados pela remoção de biomassa vegetal, favorecimento da erosão e deposição de esterco formando "ilhas férteis" pela concentração de nutrientes em torno de árvores e arbustos ou empobrecimento acentuado pelo

sobrepastoreio e erosão (Daryanto et al. 2013) o que pode explicar a heterogeneização da distribuição espacial da matéria orgânica e de outros atributos.

Na Baixada Maranhense, o uso dos solos com arroz irrigado e pecuária extensiva e a combinação destes dois sistemas vem sendo expandido (Farias Filho, Bueno e Valladares, 2020), especialmente nos municípios de Arari, Vitória do Mearim, São Mateus e Viana (Farias Filho; Ferraz Júnior 2009). Desse modo, supõe-se que esses diferentes manejos têm promovido a compactação e alteração dos conteúdos da matéria orgânica do solo, bem como modificam o padrão de distribuição espacial dos atributos do solo. Assim, apesar da espacialização dos atributos do solo exigir um número muito grande de amostras, com uso de ferramentas geoestatísticas, essa técnica que tem se mostrado eficaz no estudo da variabilidade espacial do solo, podendo ser utilizada para reduzir a amostragem com eficácia utilizando-se a interpolação e estimativa de valores (Cortez et al., 2019; Tavanti et al., 2023) e fundamentar a elaboração de mapas que podem ser utilizados na definição do correto manejo de determinada área.

Dessa forma o trabalho teve as seguintes hipóteses, i) os sistemas de manejo interferem nos atributos físicos do solo; ii) os conteúdos de carbono orgânico são influenciados pelo manejo do solo e, iii) apesar dos sistemas de manejo do solo há dependência espacial dos atributos estudados. Frente ao exposto, o presente estudo teve por objetivo investigar a variabilidade espacial dos atributos físicos dos solos e do carbono orgânico do solo (COS) em três sistemas de manejo do solo no município de Arari, no estado do Maranhão.

MATERIAL E MÉTODOS

ÁREA DE ESTUDO

O estudo foi realizado em uma propriedade rural, situada no extremo oeste do município de Arari que está localizado na porção noroeste do Estado do Maranhão, compondo a Microrregião da Baixada Maranhense (Figura 1).

O clima dessa região é úmido com um período de deficiência hídrica, que se evidencia entre os meses de julho a novembro (chegando a atingir até 900 mm), sendo classificado como B1WA'a' (IMESC, 2019). Em Arari, a precipitação pluviométrica média anual é de 1332 mm, oscilando entre 1057 (ano seco) e 3871 mm ano-1 (ano chuvoso) nos últimos 14 anos, com o máximo das chuvas situado no mês de março (MAPA, 2023). As temperaturas variam entre 24° e 35° C. O relevo local é plano, com poucas variações e uma altitude média de 5,6 m, o que submete os solos ao hidromorfismo porque

permite o extravasamento das águas do rio Mearim para as suas planícies durante o período chuvoso e a permanência da água nos solos durante grande parte do ano.

Como resultado dessas características, existem diferenças marcantes na temperatura média, precipitação anual e tipos de solo, predominando as classes de solos com alto teor de areia (>60% - IMESC, 2019). No município de Arari, a formação vegetal predominante corresponde a Floresta Ombrófila Densa, característica do bioma Amazônia, em que equivalente a 41,67% do bioma. Entretanto, o tipo de vegetação com maior área proporcional é a vegetação secundária com cerca de 24,69% da área, principalmente, as florestas de babaçuais (IMESC, 2019), tal fato está relacionado as intensificações das pressões antrópicas, sobretudo, pelas atividades agropecuárias, em que, extensas áreas com cobertura vegetal vêm sendo substituídas.

Geologicamente, o município situa-se na porção do bioma Amazônia maranhense, em que, as classes de solos predominantes são: Argissolo Vermelho-Amarelo, Latossolo Amarelo, Plintossolo Argilúvico, Gleissolo Tiomórfico e os Plintossolo Háplico, correspondendo a 78,48% da região do bioma (Santos et al., 2018; IMESC, 2019). Além disso, na região do município, há uma extensão do período de inundação, com a presença de solos hidromórficos, como os Gleissolos, que possuem baixa capacidade de drenagem e pH elevado (Santos et al., 2018; IMESC, 2019).

COLETA DE AMOSTRAS

Foram selecionadas três áreas (A, B e C) próximas umas das outras em que são desenvolvidos três diferentes sistemas de manejo sob condições topográficas e pedológicas similares, conforme descrição abaixo:

- a) Área A: área cultivada nos últimos seis anos com arroz irrigado por inundação no período de estiagem (julho a novembro), arroz de sequeiro no período chuvoso (dezembro a maio) e após colheita, nos dois ciclos produtivos, há a inserção de bovinos para aproveitamento da palhada como forragem.
- b) Área B: área com remanescentes de vegetação nativa, com espécies herbáceas, arbustivos e arbóreos, tem sido utilizada no período de estiagem por pecuária extensiva nos últimos 10 anos.
- c) Área C: área cultivada com arroz irrigado por inundação durante o período de estiagem e por arroz de sequeiro nos últimos 11 anos.

Cada uma das áreas tem dimensões de 100x100 m (1 ha) em que foram coletadas amostras de solos na profundidade de 0 a 0,20 m distantes uma da outra 10 m, em grid regular de 10x10 m, totalizando 121 amostras de solos deformadas para realização de análise granulométrica e de carbono orgânico (C orgânico) e 121 amostras indeformadas em anéis volumétricos para determinação da

resistência à penetração (RP), densidade global (Dg), porosidade total (Pt), macro e microporosidade em cada uma das áreas, perfazendo um total de 363 amostras para cada tipo de amostra. As amostras foram coletadas no mês de julho de 2013 antes do preparo do solo para o cultivo de arroz irrigado (áreas A e C) e durante o uso por pecuária extensiva nas áreas A e B. Os pontos de coleta foram georreferenciados com o uso de um receptor GPS (Trimble, modelo Juno), com precisão de 1 m, para posterior espacialização dos dados por meio de técnica geoestatística.

ANÁLISES DE SOLOS

A argila foi determinada pelo método da pipeta, utilizando-se como dispersante químico na solução NaOH 0,1 mol L-1. A areia foi determinada por tamisagem e o silte, subtraindo-se do total da alíquota as massas de argila e areia (Teixeira et al., 2017).

Para determinação da resistência à penetração, as amostras indeformadas coletadas em cilindro de 53,16 cm³ (0,03 m de altura e 0,048 m de diâmetro) foram saturadas por água durante 12 horas, pesadas e levadas à câmara de Richards, a um potencial matricial de -6 kPa até o equilíbrio, conforme EMBRAPA (2011). Em seguida, as amostras foram pesadas, procedendo-se o ensaio de resistência à penetração em um penetrógrafo de bancada, com sensor deslocando-se verticalmente a uma velocidade de 2 mm s-1.

Em seguida, as amostras foram colocadas em estufa a 105–110 °C por 48 h, para obtenção da massa de solo seco e posterior determinação da umidade saturação, que equivale à porosidade total. A microporosidade foi obtida pela determinação da umidade volumétrica de cada amostra correspondente ao potencial mátrico de -6 kPa (Embrapa, 2011) e a macroporosidade, pela diferença entre porosidade total e microporosidade. A densidade do solo foi obtida conforme metodologia descrita por Camargo et al. (2009). A determinação do C orgânico foi realizada de acordo com Raij et al. (2001).

ANÁLISES ESTATÍSTICAS

Os dados foram inicialmente avaliados por meio de estatística descritiva, calculando-se média, mediana, mínimo, máximo, desvio padrão (DP) e coeficiente de variação (CV). Foi realizada análise de variância e o teste de comparação de médias foi o de Tukey, tomando por base os níveis de significância de 5%, sendo os manejos considerados tratamentos e as amostras, pseudorrepetições. Também foi feita correlação de Pearson entre a resistência à penetração e areia, silte, argila, densidade,

porosidade total (total, macro e micro) e carbono orgânico. Nesta etapa, os dados foram processados no software Minitab Release 14.1 (Minitab Inc. 2003).

A distribuição e dependência espacial entre as variáveis foram avaliadas por técnica geoestatística que trata de problemas referentes às variáveis regionalizadas (Delarmelina et al., 2022; Tavanti et al., 2023). Sob a hipótese intrínseca, a dependência espacial entre as amostras foi estimada pelo semivariograma experimental (Tavanti et al., 2023).

Conforme a Equação 1.

(1)
$$(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [z(x_i + h) - z(x_i)]^2$$

Em que: N(h), é o número de pares experimentais de observações $Z(x_i)$ e $Z(x_i+h)$ separados por uma distância h.

Os modelos ajustados aos semivariogramas experimentais foram o esférico (equação 2) e o exponencial (equação 3), permitindo visualizar a natureza da distribuição espacial das variáveis estudadas e atender à necessidade para realização da krigagem ordinária.

(2)
$$(h) = \left\{ C_0 + C_1 \left[\frac{3}{2} \left(\frac{h}{a} \right) - \frac{1}{2} \left(\frac{h}{a} \right)^3 \right] \right\}, 0 < h \le a$$

 $C_0+C_1, 0 \ge a$

(3) $(h) = C_0 + C_1 \left[1 - exp\left(-\frac{h}{a} \right) \right]$

Em que: C_0 é o efeito pepita, C_0 + C_1 é o patamar e a é o alcance do semivariograma.

A decisão pelo melhor modelo, isto é, do melhor ajuste ao semivariograma experimental, baseou-se na menor soma do quadrado dos resíduos (SQR), maior coeficiente de determinação (R^2) e nos coeficientes de regressão da validação cruzada (CR e y).

O grau de dependência espacial (GDE) das variáveis em estudo foi avaliado segundo a classificação de Cambardella et al. (1994), calculado por 100[C₀/(C₀+C)]. Na referida classificação, valores inferiores a 25% indicam dependência espacial forte, entre 25 e 75%, dependência moderada e maiores que 75%, dependência espacial fraca. Quando não houve dependência espacial, ou seja,

quando o efeito pepita foi igual ao patamar, ocorreu o chamado efeito pepita puro – EPP (Trangmar et al., 1985).

A técnica da validação cruzada foi aplicada para decisão quanto ao melhor modelo de ajuste aos dados, método do semivariograma e cálculo do gráfico de isolinhas por krigagem (Cortez et al., 2019). Os semivariogramas, ajustes aos modelos e validação cruzada foram feitos no software *GS*+ 9.0 (Gamma Design Software 2008), sendo a espacialização das variáveis realizada no Surfer 11 (Golden Software Inc. 2012).

RESULTADOS E DISCUSSÃO

Os resultados evidenciaram que os valores de média e mediana estão próximos, indicando uma tendência de os dados exibirem uma distribuição normal e que estes seguem distribuições simétricas dos atributos físicos conforme Tabela 1. Essa tendência também foi detectada por Oliveira et al. (2013), ao avaliarem a variabilidade espacial de atributos físicos em um Cambissolo Haplico, no Amazonas. Porém, a tendência supramencionada não se confirmou para o silte e argila nas áreas B e C e para areia na área A, cujos valores de média e mediana tiveram diferenças maiores, indicando assimetria dos dados em função da grande diferença entre valores mínimos e máximos.

Em estudos desenvolvidos por (Farias Filho, Bueno e Valladares, 2020) ao analisarem solos da área de estudo, verificaram o predomínio de silte e argila, com o predomínio de argilominerais 2:1, com predomínio de caulinita e montmorilonita. O solo das áreas em estudo analisado, que apresenta valores para atributos químicos próximos aos apresentados pelos autores acima, foi classificado como Gleissolo Melânico Alítico típico, textura muito argilosa, A proeminente (GMaI), com teores médios de 549, 432 e 19 g kg-1 de argila, silte e areia, respectivamente.

Os dados demonstraram médias diferenciadas de forma significativa pelo teste de Tukey para argila e silte da área A em relação às áreas B e C, sendo que os teores da fração de areia não diferiram estatisticamente entre as três áreas (Tabela 1). Estes dados indicam maior semelhança granulométrica entre as áreas A e B e permitem classificar o solo quanto à textura como muito argilosos nas três áreas.

As médias de valores para RP, C orgânico, Pt, macro e microporosidade não tiveram diferenças significativas da área B em relação à área C. Do mesmo modo, os valores para Ds não diferiram da área A em relação à área C, que teve menor valor em B. O aumento da Ds é um indicador de degradação do solo por compactação, fenômeno também caracterizado pelo aumento da

microporosidade, resistência à penetração e pela redução da macroporosidade (Silva et al., 2021; Tavanti et al., 2023).

A correlação entre compactação e o aumento de Ds, Micro e RP foi detectada na área A, indicando ser esta a área mais alterada pelo manejo, devido ao efeito combinado entre o pisoteio animal e operações agrícolas. Feitosa et al. (2023), asseveram que a combinação mal planejada entre lavoura e pecuária conduz a vários processos de danos ambientais, dentre os quais destaca-se a degradação física dos solos, seja por compactação ou por erosão.

Tabela 1: Estatística descritiva, teste de média e correlação de Pearson para os atributos físicos e carbono orgânico em áreas com diferentes usos em Arari – MA, na profundidade 0,0-0,2 m.

darbono organico em areas com anerentes asos em 7 tan						Wir t, the professionade o,o o,z m.				
Estat. Desc.	RP	Argila	Silte	Areia	C orgânico	Ds	Pt	Macro	Micro	
	MPa		- g.kg ⁻¹		g dm ⁻³	g cm ⁻³		%		
Área A										
Média	5,73 a	555,80 a	428,50 ab	15,70 a	10,75 a	1,21 a	52,09 a	4,09 a	47,30 a	
Mediana	5,31	550,00	431,50	18,50	10,89	1,22	52,21	3,67	47,69	
Mínimo	0,78	399,40	308,69	1,00	3,37	0,93	42,52	0,17	24,35	
Máximo	12,73	675,00	594,61	32,45	18,97	1,51	67,85	9,98	55,44	
DP	3,07	55,60	53,20	6,08	2,82	0,11	3,86	2,23	4,20	
CV (%)	53,69	10,00	12,42	38,57	26,27	8,70	7,42	54,53	8,92	
CP (1)	-	0,10	0,13	0,16	-0,13*	0,62*	-0,64*	-0,02*	-0,32*	
Área B										
Média	3,62 b	508,00 b	474,40 a	17,60 a	13,36 b	1,04 b	56,47 b	5,64 b	49,49 b	
Mediana	3,41	533,20	440,75	16,48	13,16	1,05	56,40	5,16	49,72	
Mínimo	0,91	49,90	281,08	3,99	4,28	0,85	36,59	1,45	36,56	
Máximo	10,78	699,00	678,83	37,31	22,95	1,25	68,31	12,79	57,47	
DP	1,78	134,90	70,33	7,45	3,77	0,09	4,59	2,98	3,81	
CV (%)	49,33	26,55	15,90	42,84	28,26	8,60	8,13	52,86	8,99	
CP	-	0,04	0,01	0,02	-0,16*	0,32*	-0,22*	0,28*	-0,15*	
Área C										
Média	4,18 b	566,98 a	415,56 b	17,68 a	14,31 b	1,19 a	54,89 b	5,01 b	49,62 b	
Mediana	3,91	586,90	400,30	17,00	14,38	1,18	55,62	4,94	49,06	
Mínimo	0,51	350,00	270,00	7,50	6,12	0,84	41,64	1,07	35,60	
Máximo	9,65	720,00	612,00	38,00	22,95	1,55	67,38	10,37	78,80	
DP	1,95	101,61	100,16	5,45	3,76	0,16	5,76	2,05	6,32	
CV (%)	46,78	17,92	24,10	30,81	26,31	13,28	10,51	40,88	12,69	
CP		0,01	0,40*	0,03	-0,22*	0,64*	-0,53*	-0,14*	-0,24*	

Fonte: dados da pesquisa, 2023.

A variabilidade dos dados com base nos valores de coeficiente de variação (CV), segundo critérios estabelecidos por Warrick & Nielsen (1980), foi considerada baixa (CV<12%) para a Pt e média (12%>CV>62%) para RP, silte, areia e C em todas as áreas. Para as demais variáveis o CV variou entre baixo nas áreas A e B (Ds e Micro) e médio nas áreas A, B e C (Dg, C orgânico, argila, microporosidade, macroporosidade). A área com menor variabilidade dos dados foi a área A, em que cinco variáveis

⁽¹⁾ Correlação de Pearson entre a RP e argila, silte, areia, C orgânico, Ds, Pt, Macro e Micro: *significativa a 5% de erro da probabilidade. CV – Coeficiente de variação. DP – Desvio padrão. RP – Resistência à penetração. Dg – densidade global. Macro – macroporosidade. Micro – microporosidade. Pt – porosidade total.

tiveram CV baixo (argila, Ds, Pt, macro e microporosidade). Por outro lado, aquela que teve maior variabilidade dos dados foi a área C, com as oito das variáveis analisadas (RP, argila, silte, areia, C orgânico, Dg, macro e micro) com CV médio.

Para Cortez et al. (2019), valores elevados de CV podem ser considerados como os primeiros indicadores da existência de heterogeneidade nos dados. Os dados de RP foram considerados altos nas três áreas (Tabela 1), de acordo com classificação proposta por Arshad et al. (1996), sendo que a área A foi aquela que apresentou o solo mais compactado, a área B teve os menores valores e a área C, valores intermediários. O valor médio para RP obtido na área A (5,73 MPa) está acima do limite superior de restrição ao enraizamento encontrado por Dorneles et al. (2021) que destacam que o valor restritivo pode variar entre 1,00 a 5,00 MPa para os diferentes tipos de solo e culturas.

Apesar de haver discordância entre valores limitantes ao crescimento da cultura pela RP, autores como Vial et al. (2013) evidenciam que com índices superiores a 5,20 MPa, a compactação promove interação negativa com a entrada de água no solo, trocas gasosas e com o rendimento de grãos na cultura do arroz. Para Stefanoski et al. (2013), no Brasil valores críticos de resistência à penetração podem variar de 1,50 MPa a 4,00 MPa, mas valores próximos a 2,00 MPa são, de maneira geral, aceitos como impeditivos ao crescimento radicular, resultando em prejuízos econômicos.

Mitchell et al. (2013) detectaram que os solos argilosos cultivados com arroz em várzea no Camboja ao apresentarem um RP de 3,00 MPa já indicam fortes sinais de compactação. A partir dos valores apontados, é possível afirmar que nas áreas analisadas o solo já está compactado o que pode estar promovendo perdas na produtividade do arroz, especialmente no cultivo de sequeiro.

A variabilidade da RP é comumente alta e seus valores tendem a serem elevados quando o solo é cultivado por sucessivos anos com arroz irrigado por inundação em função das perdas de macroporos na camada superficial (Reis et al., 2018). No presente estudo, a RP teve correlação negativa com a porosidade total e positiva com C orgânico nas três áreas (Tabela 01). Por outro lado, a RP não teve correlação com a argila, areia e silte (com exceção da área A), o que pode ser explicado pelo baixo grau de estruturação do solo e pela redução dos macroporos decorrente da mecanização (áreas A e C) e do pisoteio de animais (área B).

Apesar da compactação ser desejável em cultivo de arroz irrigado, porque reduz as taxas de percolação da água durante todo o período de crescimento das culturas, permitindo o controle de ervas espontâneas e facilitando o nivelamento do campo agrícola e plantio (Marrenjo et al., 2016), quando os solos são utilizados sequencialmente por culturas de sequeiro estas são prejudicadas (Silva,

2021), o que provavelmente está ocorrendo nas áreas A e C que também são cultivados no referido sistema.

Esse problema tende a se intensificar porque as características físicas desfavoráveis dos solos hidromórficos vão se agravando em função da aplicação de manejo inadequado ao longo dos anos, fazendo com que se formem regiões compactadas logo abaixo da camada (Farias Filho, Bueno e Valladares, 2020), o que resultará em perdas às culturas.

A Dg teve valores também elevados nas três áreas e foi maior na área A, demonstrando correlação positiva com a RP. Por outro lado, a macroporosidade foi menor nas áreas A e C em que há mecanização, coincidindo com valores maiores para o C orgânico e Dg. Isso ocorreu, porque a destruição dos macroporos pela mecanização agrícola, segundo Mitchell et al. (2013), aumenta a Dg e reduz a condutividade hidráulica e, em várzeas sistematizadas para cultivo do arroz, ocasiona o acúmulo de água e consequente acúmulo de matéria orgânica.

Os dados encontrados ratificam a informação de Embrapa (2011) e (Farias Filho, Bueno e Valladares, 2020) de que solos hidromórficos, como o aqui analisado, possuem densidade naturalmente elevada, reduzida condutividade hidráulica, baixa velocidade de infiltração, relação micro/macroporos muito alta e baixa capacidade de armazenamento e disponibilidade de água às plantas na camada superficial.

Os valores para COS situaram-se entre 11,00 (área A) e 14,31 g dm³ (área C), o que coincide com valores encontrados para solos hidromórficos cultivados com arroz no Rio Grande do Sul (Torres et al., 2013). Valores mais altos de C orgânico nas áreas cultivadas com arroz irrigado podem ser explicados pela formação de ambiente anóxico de decomposição, fato que resulta na presença de ácidos orgânicos na solução da água que podem reduzir a produtividade da cultura quando em excesso (Evald et al., 2021).

Os menores valores de COS coincidiram com as áreas em que a pecuária é desenvolvida (áreas A e B), indicando que este manejo tende a reduzir o teor de matéria orgânica do solo (MOS). Para, este fenômeno ocorre porque a maior intensidade de pastejo determina menor massa de forragem e redução da cobertura vegetal, incorrendo em redução de matéria orgânica adicionada ao solo (Torres et al., 2013; Locatteli et al., 2022).

A análise geoestatística permitiu inferir que nas três áreas as variáveis apresentaram grau de dependência espacial isotrópica predominantemente forte, sendo moderado apenas para silte e porosidade total em B e microporosidade em C (Tabela 2). Os modelos ajustados foram o exponencial

para RP na área C e o esférico para as demais variáveis nas três áreas, com exceção dos teores de C orgânico e de areia que não tiveram dependência espacial (efeito pepita puro).

Os valores para CR e y da validação cruzada (Tabela 2) permitiram inferir que os ajustes foram aceitáveis para as variáveis Pt nas três áreas, RP na área C, argila em B e areia em A e B, visto situaram-se próximo a 1 (para CR) e a zero (para y). As variáveis cujo ajuste não foi satisfatório foram silte na área B e microporosidade nas áreas A e B, pois os valores de CR se distanciaram de 1 e de y foram distantes de zero.

Tabela 2: Modelos e parâmetros ajustados aos semivariogramas experimentais dos atributos físicos dos solos estudados e da RP (profundidade 0-0.20 m).

Atributo	Áre	Modelo	C ₀	C ₀ +C ₁	GDE	Α	R²	SQR	CR	у	n
	а										
	A *	Esférico	0,36	15,77	2,28	18,80	0,88	8,62	0.88	0,73	119
	В	Esférico	0,28	3,07	9,12	17,50	0,98	0,03	0.65	1,26	121
	C*	Ехр.	0,25	2,99	8,36	39,90	0,90	0,195	0.91	-0.03	114
	A^*	Esférico	0,01	30,83	0,03	30,41	0,70	212,00	0.97	1,54	115
Argila	B*	Esférico	16,20	188,11	8,61	22,70	0,69	1448,00	1.00	0,28	113
	C*	Esférico	6,28	103,30	6,08	21,70	0,56	93,90	0.92	4.83	110
	A^*	Esférico	0.08	26,04	0,31	27,68	0,82	114,00	1.01	-0,29	111
Silte	B*	Esférico	45,07	109,40	41,20	40,60	0,92	139,00	0.60	88,8	113
	C*	Esférico	0,10	83,40	0,12	23,60	0,63	1096,00	1.23	-4,36	111
	A^*	Esférico	0,10E-2	0,37	0,27	16,95	0,96	0,01	0.97	0,05	118
Areia	В	EPP(1)	-	-	-	-	-	-	-	-	-
	C*	Esférico	0,07	0,27	25,93	45,60	0,88	2,93E-04	0.80	0.36	118
A*	A^*	Esférico	0,10E-02	0,01	10,00	28,03	0,94	4,62E-06	1.00	-0,01	118
Dg	B*	Esférico	5,77E-04	7,61E-03	7,58	18,40	0,80	2,83E-06	0.72	1,01	110
	C*	Esférico	0,20E-05	0,02	0,01	21,20	0,74	2,97E-06	0.94	0,08	116
	A *	Esférico	1,01E-3	1,01E-2	10,00	22,14	0,85	5,19E-08	0.92	0,04	118
	B*	Esférico	1,06E-3	1,97E-3	53,81	16,90	0,82	1,94E-07	0.78	0,12	116
	C*	Esférico	0,23E-03	0,30E-2	7,67	20,10	0,76	3,48E-07	0.95	0,02	117
	Α	Esférico	3,37	19,71	17,10	46,10	0,97	5,46	1.07	-0,34	121
Macro	B*	Esférico	0,42	19,83	2,12	20,60	0,88	14,1	0.77	1,52	120
	C*	Esférico	2,74	7,87	34,82	41,60	0,97	0,32	0.82	0,98	116
	A *	Esférico	2,98	24,45	12,19	43,60	0,96	9,59	0.85	7,05	115
Micro	B*	Esférico	0,02	20,26	0,10	22,80	0,86	30,6	0.47	26,45	117
	C*	Esférico	0,48	34,70	1,38	24,20	0,87	39,70	0.82	-0.03	118
С	A *	Esférico	0,08	19,37	0,41	27,70	0,81	81,4	1.04	-0,69	117
orgânic	В	EPP	-	-	-	-	-	-	-	-	-
0	C*	Esférico	0,49	36,29	1,35	23,70	0,82	49,00	0.82	1,31	120

Fonte: dados da pesquisa, 2023.

Os valores para C₀ (Tabela 2) foram baixos para quase todas as variáveis que apresentaram dependência espacial, com exceção do silte que apresentou valor alto. Valores de C₀ baixos indicam

⁽¹⁾ Efeito pepita puro. Exp. – exponencial. C₀ - Efeito pepita; C₀+ C₁- Patamar; GDE – grau de dependência espacial 100[C₀/(C₀+C)], dado em %. R² - coeficiente de determinação. SQR – soma de quadrado dos resíduos. *a* – Alcance; CR – coeficiente de regressão da validação cruzada. *y* – eixo de origem no valor zero da validação cruzada. RP – Resistência à penetração. Dg – densidade global. Pt – porosidade total. Macro – macroporosidade. Micro – microporosidade. *n* – número de vizinhos utilizados no ajuste dos modelos aos dados. *Retirada de tendência.

pequena aleatoriedade dos dados e pequenos erros de amostragem e de análise, sendo um bom indicador de qualidade dos dados. Já o R², um dos critérios utilizados para a escolha do modelo (Embrapa, 2011; Farias Filho, Valladares e Bueno, 2020), teve valores próximos a 1 para quase todas as variáveis, apresentando os menores valores para a argila nas três áreas.

O alcance (a) variou entre 16,90 (para Pt na área B) e 46,60 m (areia na área C), o que indica que, mesmo diante da variabilidade nas três áreas, condição comum aos solos, os valores estimados se mostram próximos aqueles amostrados.

O alcance da dependência espacial é um atributo importante no estudo dos semivariogramas, pois representa a distância máxima em que os pontos amostrais estão correlacionados espacialmente entre si, ou seja, os pontos localizados numa área de raio igual ao alcance são mais homogêneos entre si do que com aqueles localizados fora desta área (Marrenjo et al., 2016; Delarmelina et al., 2022). Os maiores valores para alcance foram obtidos para a variável macroporosidade, indicando contribuição do manejo agrícola para uma maior continuidade espacial dos dados pela redução dos macroporos.

Silte e argila apresentaram distribuição espacial heterogênea, pois possuem valores elevados para a SQR. Porém, apresentam forte dependência espacial. Os teores de argila (em A) e o silte (em A e C) foram maiores nas áreas de menores cotas altimétricas (Figura 2).

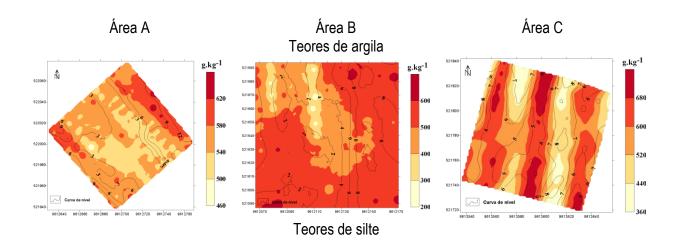
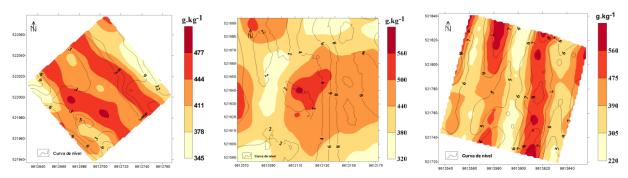



Figura 2: Distribuição espacial dos teores de argila e silte nas áreas A, B e C.

Fonte: dados da pesquisa, 2023.

Na área C, em que o manejo se dá apenas pelo cultivo mecanizado, argila e silte são distribuídos com tendência anisotrópica em relação à topografia (Figura 2). Esse padrão de distribuição tem relação com o sistema de preparo da área para o cultivo, que revolve sedimentos na área alta para aterros nas áreas mais baixas e, quando ocorre a inundação, os sedimentos mais finos ficam em suspensão na água, decantando onde há acúmulo de água por um tempo maior. Semelhantemente, Dorneles et al. (2021) observaram padrão de distribuição similar em um Planossolo Hidromórfico cultivado sob soja em Santa Maria, RS.

O carbono orgânico do solo (COS) na área B não apresentou dependência espacial (EPP). Para Cortez et al. (2019), quanto maior o efeito pepita, mais fraca é a dependência espacial dos atributos em questão. A não existência de dependência espacial do COS na área B pode ser justificada pela formação de pontos de reboleiras na vegetação em decorrência do pisoteio e pastejo excessivos onde há gramíneas e da não visitação aos locais onde há árvores e arbustos espinhosos (fitofisionomia típica na vegetação local) que não são forragem.

Além disso, Braga et al. (2020) constataram que o pastejo do gado conduz ao processo de heterogeneização da cobertura vegetal e à intensificação da variabilidade dos atributos dos solos. A pecuária tende a tornar esse atributo muito heterogêneo devido ao pastoreio que é conhecido por afetar o padrão espacial dos recursos do solo por meio de processos biológicos como a remoção de biomassa vegetal e deposição de esterco (Damian et al., 2023).

A área B foi aquela que apresentou número menor de variáveis com dependência espacial dos atributos (RP, silte, macro e microporosidade), sendo que para elas o GDE foi forte. Esse resultado permite afirmar que as alterações geradas pelo revolvimento da camada arável dos solos nas áreas A e C promovem redução na variabilidade dos atributos físicos do solo, conforme constatação de Marrenjo et al. (2016) ao analisarem a variabilidade de atributos físicos dos solos em Pernambuco.

A RP apresentou dependência espacial forte e baixos valores para SQR e os gráficos de krigagem apontam uma tendência anisotrópica nas áreas A e C (Figura 3).

Figura 3: Distribuição espacial da resistência à penetração (RP) nas áreas A, B e C.

Fonte: dados da pesquisa, 2023.

Apesar da RP não ser apresentada como uma forte preocupação no cultivo de arroz inundado, pois até certo ponto a compactação é desejável, por reduzir perdas de água por percolação, o manejo do solo em condições de elevado teor de umidade resulta na quebra dos agregados e destruição dos macroporos e consequentemente no aumento da densidade do solo e resistência à penetração, originando efeitos negativos sobre o desenvolvimento das culturas (Reis et al., 2018).

Dentre todas as variáveis analisadas, a porosidade total, macro e microporosidade foram aquelas que apresentam dependência espacial maior, menor SQR e maior R² nas três áreas (Figura 4).

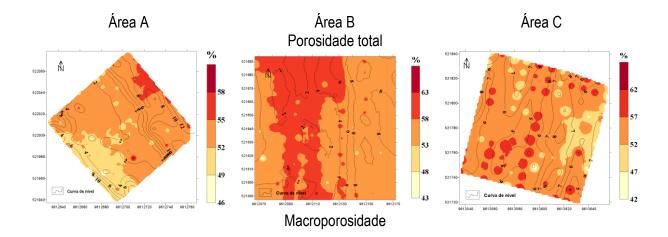
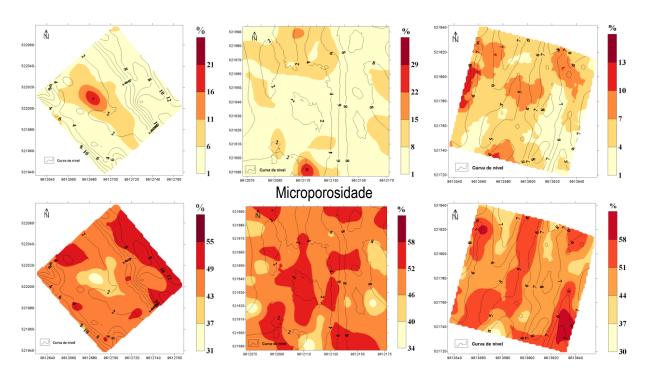



Figura 4: Distribuição espacial da porosidade total, macro e microporosidade nas áreas A, B e C.

Fonte: dados da pesquisa, 2023.

Nas áreas A e C em que a mecanização agrícola é desenvolvida, a macroporosidade foi menor, indicando interação negativa com o manejo agrícola. Na área B em que ainda há vegetação nativa, a macroporosidade foi maior e a distribuição espacial dos maiores valores de microporosidade coincidem com as áreas em que há gramíneas e onde o pastoreio é mais intenso, indicando que o pisoteio do gado reduz a quantidade dos macroporos pela desagregação do solo (Locatteli et al., 2022; Sousa et al., 2021).

Desse modo, é possível afirmar que estes são atributos relevantes que devem ser observados quando da realização de operações agrícolas nos solos locais. Esse resultado coaduna com a afirmativa de Cortez et al. (2019) de que a porosidade do solo é de grande importância para adoção de um manejo adequado, pois este sistema está estreitamente ligado à dinâmica do armazenamento e do movimento de solutos e de circulação de gases no seu interior, essenciais aos processos bioquímicos das plantas.

CONCLUSÕES

Os resultados apontam que as áreas analisadas apresentaram elevados valores de resistência à penetração, indicando que o manejo ocasionou compactação ao solo, especialmente na área A, onde há efeito combinado de pastoreio e cultivo de arroz. Apesar de não ser tratada com

preocupação no cultivo de arroz por inundação, a compactação pode gerar prejuízos à produção, especialmente ao arroz cultivado em sequeiro. Além disso, os teores de carbono orgânico do solo (COS) foram menores nas áreas em que há pastoreio, indicando ser este um manejo a ser evitado na área.

Nesse contexto, os atributos do solo apresentaram dependência espacial em todas as áreas, a exceção da areia e carbono orgânico na área B que podem ter sido heterogeneizados pelo pastejo. Ademais, os teores de argila foram maiores nas regiões de menores cotas altimétricas na área C, com tendência anisotrópica em relação à topografia, demonstrando interação com o manejo.

REFERÊNCIAS

ARSHAD, M.A.; LOWERY, B.; GROSSMAN, B. Physical tests for monitoring soil quality. In: DORAN, J.W.; JONES, A.J., eds. Methods for assessing soil quality. **Soil Science Society of America**, Madison, p.123-141, 1996.

BRAGA, G. J.; RAMOS, A. K. B.; MACIEL, G. A.; FERNANDES, F. D.; CARVALHO, M. A.; FONSECA, C. E. L. **Métodos de Pastejo e Estimativas para o Ajuste do Número de Bovinos na Pastagem**. EMBRAPA, Planaltina: DF, 2020.

CAMARGO, O. A.; MONIZ, A. C.; JORGE, J. A.; VALADARES, J. M. A. S.. Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas. (Boletim Técnico 106). Campinas, SP: IAC, 2009.

CORTEZ, J. W.; MORENO, T. M.; FARINHA, L. S.; ARCOVERDE, S. N. S.; VALENTE, I. Q. M. Variabilidade espacial da resistência do solo à penetração em um sistema de semeadura direta. **Científica,** v.47, n.2, p.175-182, 2019. https://doi.org/10.15361/1984-5529.2019v47n2p175-182.

DAMIAN, J. M.; MATOS, E. S.; PEDREIRA, B. C.; CARVALHO, P. C. F.; PREMAZZI, L, M.; CERRI, C. E. P. Intensification and diversification of pasturelands in Brazil: Patterns and driving factors in the soil carbon stocks. **Catena**, v.220, p.106750, 2023. https://doi.org/10.1016/j.catena.2022.106750.

DARYANTO, S.; ELDRIGDE, D. J.; WANG, L. Ploughing and grazing alter the spatial patterning of surface soils in a shrub-encroached woodland. **Geoderma**, v.200-201, p.67–76, 2013. http://dx.doi.org/10.1016/j.geoderma.2013.02.006.

DELARMELINA, W. M.; CALDEIRA, M. V. W.; GOMES JUNIOR, D.; GODINHO, T. O.; CALIMAN, J. P.; GONÇALVES, E. O.; KUNZ, S. H.; PEREIRA, M. G.; SILVA, C. S. Soil attributes and spatial variability of soil organic carbon stock under the Atlantic Forest, Brazil. **Ciência Florestal**, v.32, n.3, p.1528-1551, 2022. https://doi.org/10.5902/1980509867028.

DORNELES, A. B.; GROHS, M.; FRANCETTO, T. R.; SANTOS, E. L.; LOVATO, B. C.; MARTINS, L. P. Utilização da escarificação e sua influência nos atributos físicos de um Planossolo em profundidade. *In:* L Congresso Brasileiro de Engenharia Agrícola – CONBEA. 2021. Disponível em: https://conbea.org.br/anais/publicacoes/conbea-2021/livros-2021/engenharia-de-agua-e-solo-eas-3/3067-utilizacao-da-escarificacao-e-sua-influencia-nos-atributos-fisicos-de-um-planossolo-em-profundidade/file. Acesso em: 24 nov. 2024.

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária. **Manual de métodos de análise de solo.** 2ª. ed. rev. atual. Rio de Janeiro: Centro Nacional de Pesquisa de Solos, 2011.

EVALD, A.; MELO, V. F.; ROCHA, P. R. R.; CORDEIRO, A. C. C.; MAIA, S. S.; ESPINDOLA, I. C. Soil attributes under different water management systems of rice paddies in the amazonian savanna of Brazil. **Revista Caatinga**, v.34, n.3, p.640 – 649, 2021. http://dx.doi.org/10.1590/1983-21252021v34n316rc.

FARIAS FILHO, M. S.; BUENO, C. R. P.; VALLADARES, G. S. Caracterização e Classificação de Solos Hidromórficos sobre Aluviões Fluviomarinhos no município de Arari - MA. **Revista Ra'eGa**. Curitiba, v.47, n.1, p.85-98, 2020. http://dx.doi.org/10.5380/raega.

FARIAS FILHO, M. S.; FERRAZ JÚNIOR, A. S. L. A cultura do arroz em sistema de vazante na Baixada Maranhense, periferia do sudeste da Amazônia. **Pesquisa Agropecuária Tropical,** v.39, n.2, p.82-91, 2009. https://revistas.ufg.br/pat/article/view/4597.

GAMMA DESIGN SOFTWARE. GS+ Geostatistics for the Environmental Sciences 9.0. Gamma Design Software, MI, USA, 2008.

IMESC - Instituto Maranhense de Estudos Socioeconômicos e Cartográficos. **Sumário Executivo do Zoneamento Ecológico Econômico do Estado do Maranhão (ZEE-MA): etapa Bioma Amazônia**. São Luís: IMESC, 2019, 5778 p.

LOCATELLI, J. L.; SANTOS, R. S.; CHERUBIN, M. R.; CERRI, C. E. P. Changes in soil organic matter fractions induced by cropland and pasture expansion in Brazil's new agricultural frontier. **Geoderma Regional**, v.28, p.e00474, 2022. https://doi.org/10.1016/j.geodrs.2021.e00474

LOCATELLI, J. L.; LIMA, R. P.; SANTOS, R. S.; CHERUBIN, M. R.; CREAMER, R. E.; CERRI, C. E. P. Soil Strength and Structural Stability Are Mediated by Soil Organic Matter Composition in Agricultural Expansion Areas of the Brazilian Cerrado Biome. **Agronomy**, v.13, n.71, 2023. https://doi.org/10.3390/agronomy13010071.

MAPA – Ministério da Agricultura, Pecuária e Abastecimento. **Sistema de Monitoramento Agrometeorológico**-AGRITEMPO. 2023. Disponível em: http://www.agritempo.gov.br/agroclima/shdescritor. Acesso em: 28 nov. 2024.

MARRENJO, G. J.; PÁDUA, E. J.; SILVA, C. A.; SOARES, P. C.; ZINN, Y. L. Impactos do cultivo por longo tempo de arroz inundado em Gleissolos. **Pesquisa Agropecuária Brasileira**, v.51, n.8, p.967-977, 2016. https://doi.org/10.1590/S0100-204X2016000800009.

MINITAB RELEASE 14.1. Statistical Software. US/ Canadá, 2003.

MITCHELL, J. et al. Wet cultivation in lowland rice causing excess water problems for the subsequent non-rice crops in the Mekong region. **Field Crops Research**, Amsterdam, v.152, p.57–64, 2013. http://dx.doi.org/10.1016/j.fcr.2012.12.006.

OLIVEIRA, I. A.; CAMPOS, M. C. C.; SOARES, M. D. R.; AQUINO, R. E.; MARQUES JÚNIOR, J.; NASCIMENTO, E. P.. Variabilidade espacial de atributos físicos em um Cambissolo Haplico, sob diferentes usos na região sul do Amazonas. **Revista Brasileira de Ciência do Solo**, v.37, p.1103-1112, 2013. https://doi.org/10.1590/S0100-06832013000400027.

OLIVEIRA, D. C.; MAIA, S. M. F.; FREITAS, R. C. A.; CERRI, C. E. P. Changes in soil carbon and soil carbon sequestration potential under different types of pasture management in Brazil. **Regional Environmental Change**, v.22, p.87, 2022. https://doi.org/10.1007/s10113-022-01945-9.

RAIJ, B. V.; ANDRADE, J. C.; CANTARELLA, H.; QUAGGIO, J. A. **Análise química para avaliação da fertilidade de solos tropicais**. Campinas: Instituto Agronômico, 285p., 2001.

REIS, D. A.; LIMA, C. L. R.; BAMBERG, A. L.; RIBEIRO, P. L. Compressibility and water availability in Albaqualf soils under different deployment times in no-tillage. **Scientia Agricola**, v.75, n.5, p.393-399, 2018. http://dx.doi.org/10.1590/1678-992X-2016-0219.

SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R.; ALMEIDA, J. A.; ARAÚJO FILHO, J. C.; OLIVEIRA, J. B.; CUNHA, T. J. F. Sistema brasileiro de classificação de solos. 5. ed., **revista e ampliada** – Brasília, DF: Embrapa, 2018. 356p. Disponível em: https://www.embrapa.br/solos/busca-de-publicacoes/publicacao/1094003/sistema-brasileiro-de-classificacao-de-solos. Acesso em: 15 de out. de 2024.

SILVA, P. L. F.; Compactação e seus efeitos sobre o funcionamento do solo e a absorção de nutrientes pelas plantas: uma revisão bibliográfica. **Meio Ambiente (Brasil)**, v.3, n.2, p.024-033, 2021. https://doi.org/10.5281/zenodo.5118287.

SOUSA, R. O.; CARLOS, F. S.; SILVA, L. S.; SCIVITTARO, W. B.; RIBEIRO, P. L.; LIMA, C. L. R. No-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectives. **Revista Brasileira de Ciência do Solo**, v.45, p.e0210102, 2021. https://doi.org/10.36783/18069657rbcs20210102.

STEFANOSKI, D. C.; SANTOS, G. G.; MARCHÃO, R. L.; PETTER, F. A.; PACHECO, L. P. Uso e manejo do solo e seus impactos sobre a qualidade física. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande – PB, v.17, n.12, p.1301–1309, 2013. http://www.alice.cnptia.embrapa.br/alice/handle/doc/975125.

TAVANTI, R. F. R.; LIÑARES, M. L.; SOARES, M. B.; TREVISAN, R. G.; TAVANTI, T. R.; FREDDI, O. S.; MONTANARI, R.; GONZÁLEZ, A. P. Macro-scale spatial modeling reveals the role of soil organic matter quality in CO2 emissions. **Geoderma Regional**, v.34, p.e00690, 2023. https://doi.org/10.1016/j.geodrs.2023.e00690.

TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. **Manual de métodos de análise de solo**. Brasília, DF: Embrapa, 2017.

TORRES, J. L. R.; RODRIGUES JÚNIOR, D. J.; VIEIRA, D. M. DA S. alterações nos atributos físicos do solo em função da irrigação e do pastejo rotacionado. **Irriga**, v.18, n.3, p.558-571, 2013. http://dx.doi.org/10.15809/irriga.2013v18n3p558.

TRANGMAR, B. B.; YOST, R. S.; UEHARA, G. Application of geostatistics to spatial studies of soil properties. Advances in **Agronomy**, Maryland Heights, v. 38, p. 45-94, 1985. https://doi.org/10.1016/S0065-2113(08)60673-2.

VIAL, L. K; LEFROY, R. D. B.; FUKAI, S. Effects of hardpan disruption on irrigated dry-season maize and on subsequent wet-season lowland rice in Lao PDR. **Field Crops Research**, v.152, p.65-78, 2013. http://dx.doi.org/10.1016/j.fcr.2013.06.016.

WARRICK, A. W.; NIELSEN, D. R. **Spatial variability of soil physical properties in the field**. In: HILLEL, D. (Ed.). Applications of soil physics. New York: Academic, 1980.

YADAV, P.; JAISWAL, D. K.; SINHA, R. K. 7 – Climate change: impact on agricultural production and sustainable mitigation. **Global Climate Change**, p.151-174, 2021. https://doi.org/10.1016/B978-0-12-822928-6.00010-1.

